Microbiology

Themes

man came into the emergency
ward at one o’clock. His thumb came in an hour later. The surgeon’s job: get them back together. The successful re-attaching of
fingers to hand requires long hours of painstaking work in microsurgery. In the operating room , the surgeon doesn’t stand, but
sits in a chair that supports her body. Her arm is cradled by a pillow. Scalpels are present as are other standard surgical tools,
but the suture threads are almost invisible, the needle thinner than a human hair. And all the surgical activity revolves around the
most important instument, the microscope. The surgeon will spend the next few hours looking through the microscope at broken
blood vessels and nerves and sewing them back together again. The needles are so thin that they have to be held with
needlenosed jeweller’s forceps and will sew together nerves that are as wide as the thickness of a penny. To make such a stitch,
the surgeon’s hands will move no more than the width of the folded side of a piece of paper seen end on! Imagine trying to sew
two pieces of spaghetti together and you’ll have some idea of what microsurgery involves. Twenty-five years ago, this man’s
thumb would have been lost. But in the 1960s, surgeon’s began using microscopes to sew what previously had been almost
invisible blood vessels and nerves in limbs. Their sewing technique had been developed on large blood vessels over a half
century earlier but could not be used in microsurgery until the needles and sutures became small enough. The surgical technique,
still widely used today, had taken the frustrating unreliability out of sewing slippery, round-ended blood vessels by ingeniously
turning them into triangles. To do this, a cut end of a blood vessel was stitched at three equidistant points and pulled slightly
apart to give an anchored, triangular shape. This now lent itself to easier, more dependable stitching and paved the way for
microsurgery where as many as twenty stitches will have to be made in a blood vessel three millimetres thick. The needle used
for this can be just 70 millimetres wide, only ten times the width of a human blood cell. All this technology is focused on getting
body parts back together again successfully. The more blood vessels reattached, the better the survival chances for a toe or a
finger. The finer the nerve resection, the better the feeling in a damaged part of the face, or control in a previously useless arm.

But the wounded and severed body part must be treated carefully. If a small part of the body, such as a finger is cut off, instead
of torn, wrapped in a clean covering, put on ice and then reattached within a few hours, the chance of success is over ninety
percent, as long as one good artery and one good vein can be reattached. Not only is micro surgery allowing body parts to be
reattached, it’s also allowing them to be reshuffled. Before 1969, nothing could be done for you if you’d had your thumb
smashed beyond repair. But in the past 14 years, you would have been in luck, if your feet were intact. Every year in North
America, hundreds of big toes are removed from feet and grafted onto hands. Sometimes tendons are shifted from less
important neighbouring fingers to allow the thumb to work better in its unique role of opposing the other fingers and allowing us
to grip. While we in North America can live without our big toes and never really miss them, people in Japan can’t. They need
their big toes to keep the common footwear, the clog, on their feet. So their second toe is taken instead. Farmers, labourers car
accident victims and home handymen are the people most often helped by microsurgery replants. And because blood vessels
are being reattached, burn victims can now benefit. Flaps of their healthy skin are laboriously reattached more successfully,
blood vessel by blood vessel, to increase chances that the graft will take. Some women, whose diseased Fallopian tubes have
become blocked, can have them reopened microsurgically. When a cancerous esophagus must be removed, it can be replaced
using a section of the person’s own bowel. These people can then lead a more normal life, using their mouth to eat with instead
of inserting food though a feeding tube in their stomach. Doctors have been able to rebuild an entire lower face by sculpting the
lower jaw from living hip bone and covering it with the skin from that piece of bone. In all, over seventy parts of your body can
be used as donor backups and recycled into other damaged sites. And because your body won’t reject your own tissue – a
constant hazard in transplants – in this case, you are your own best friend. In everyday use, however, microsurgery is proving to
be a miracle worker, large and small. We take for granted, for instance, all the complex nerve and muscle control that goes into
a simple a gesture as smiling. But one young woman couldn’t. An accident left her with a face that was damaged and unable to
smile. Microsurgery reconnected severed nerves, giving muscle control back to her face, restoring her looks and giving her
something to smile about. Words
/ Pages : 845 / 24

We Will Write a Custom Essay Specifically
For You For Only $13.90/page!


order now